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Dynamical structure factor in disordered systems
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We study the spectral width as a function of the external momentum for the dynamical structure factor of a
disordered harmonic solid, considered as a toy model for supercooled liquids and glasses. In the contexts of
both the single-link coherent potential approximation and a single-defect approximation, two different regimes
are clearly identified: if the density of states at zero energy is zero, the p&daW is recovered for small
momentum. On the contrary, if the disorder induces a nonvanishing density of states at zero energy, a linear
behavior is obtained. The dynamical structure factor is numerically calculated in lattices as largeaas! 96
satisfactorily agrees with the analytical computations.

PACS numbds): 61.43.Fs, 63.56:x

I. INTRODUCTION shares qualitatively with the supercooled liquids some rel-
evant spectral properties: the existence of high-frequency

The spectrum of vibrational excitations of supercooledsound and a boson peak. The dynamical structure factor of
liquids and glasses is attracting a great deal of attention frorthe disordered-solid model was also studied in R&f. but,
the experimental sidgl], in numerical simulation§2], and  in the context of the well known coherent potential approxi-
also from the analytical point of vie@8—5]. The recent de- mation(CPA) [8], the broadening of the peak corresponding
velopment of high-resolution inelastic x-ray scattering facili- t0 the high-frequency sound turned out to be proportional to
ties has allowed study of the dynamical structure factors op”, very different from supercooled liquids, where it is pro-
glasses and liquids up to mesoscopic exchanged moments.fertional top?. It was noticed, however, that a rather differ-
has become clear that the spectra of excitations of fratj ent scaling appeared at the characteristic frequencies of the
ile and strong glass formers present interesting features inboson peak, and it was argued that the boson peak develops
the >0.1 THz frequency range, namely, the boson peak an&hen some spring constants are allowed to have a small
high-frequency sound. In the dynamical structure factor, &negative value. On the other hand, in REF], it was also
peak is observed at frequenci@$p) linear in the exchanged suggested that if an extensive number of negative spring con-
momentum up to 0fdy,— 0.5p,, po being the position of the stants is present in three-dimensional disordered-solid-like
first maximum in the static structure factor. The slope of thesystems, thep? broadening will appear. In this paper, we
almost linear dispersion relatiofi(p), if extrapolated to Want to investigate the problem of the peak broadening, by
zero exchanged momentum, yields the macroscopic sourepth numerical and analytical means. By focusing on the
velocity (thus the name “high-frequency sound'This peak high-frequency sound, our main finding will be that the
located atQ)(p) has a very mildly temperature-dependentbroadeningalwaysholds, unless the solid becomesstable
width, which grows with the square of the external momen-That is, if the dynamical matrix, to be defined later, has an
tum. This independence of the spectral width on temperaturéxtensive number of negative eigenvalues, the system does
makes it very plausible that the microscopic origin of thispresent soundlike peaks in its dynam|cal structure factor, but
broadening is to be found in disorder. At higher exchangedvith a Wldth proportional tg, not p®. Otherwise, the stan-
momenta, however, the peak position ceases to depend ¢iard p* behavior is to be expected. Furthermore, thig
the external momentum, and stabilizes at a frequency stilbehavior of disordered lattice models is closely linked to the
small if compared to the Debye frequency. This boson peakact that the disorder concerns the strengths of the interac-
is reflected in the low-temperature anomalies of the specifiions and not the geometry of the system. Hence there is no
heat, and appears in instantaneous normal mode analysis @&son to expect a similar connection between negative ei-
an excess in the density of states compared tasth®ebye  genvalues and deviations from tpé scaling in supercooled
spectrum. liquids.

The above mentioned spectral properties have recently The layout of the rest of this paper is as follows. In Sec. Il
been recovered in the context of the mode-coupling theorywe present the model that we shall study, and we introduce
properly adapted to describe the glassy phise Yet it our notation. In Sec. lll we present our analytical calcula-
would also be very interesting to obtain the high-frequencytions for the dynamical structure factor. The results are com-
sound properties microscopically, using a very simplifiedpared with a numerical computation in Sec. IV. In Sec. V,
model, in order to understand which are the essential ingrexe discuss our results and the outlook for this work.
dients. An appealingly simple model was proposed in Ref.

[6]: it is a model of a disordered three-dimensional harmonic Il. MODEL
solid, where the disorder is put on the values of the spring
constants, in order to mimic the topological disorfiéf ex- A disorderd harmonic soli§i6] consists of a set of par-

isting in supercooled liquids. Interestingly enough, the modeticles of massm, placed on the nodes of a simple cubic
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lattice in D dimensions, with lattice spacing, connected expansion in the density of defects. Our nonperturbative ef-
with their nearest neighbors through random springs. Théect will be a level crossingthe only possible source of
potential energy of such a system is given in terms of thenonanalyticity in such a simple modelndeed, if all thea's
displacement of the particles from the lattice nodes: are greater tham-1, it is evident from Eq(1) that no nega-
5 tive eigenvalue may arise, and so the plane wave of zero
mQ2a? by bxi |2 momentum is the ground state of the dynamical matrix, with
-7 g ;1 (14 ay ) T a |- (1) zero eigenvalue. On the other hand, we shall now sketch a
variational estimate of the ground state that shows that if
In the above expressiof) is a characteristic frequency and there is onlyone defect on the lattice, but this is negative

4 is the lattice unit vector in the direction. Periodic bound- €nough, the ground state of the dynamical matrix is no
ary conditions are assumed in a finite lattice, and we hav&Pnder zero, but negative. Let us first keep in E3).only the
also introduced the notatiom, , for the random part of the SPring connecting sites 1 and 2, corresponding to the large
spring constant of the sprinéﬂconnecting siseand x+ 5 negative defect. The eigenvectors are easily shown to be
Notice that, for the sake of simplicity, the displacement fieId¢X: (O 1+ 5X'2)/‘/§ and (.1~ 5’('2)/‘/5' The first one is the

&, is a scalar rather than a vec{@, so that we will not be restriction of the zero-momentum plane wave to this trivial
X ]

able to separate the longitudinal and transverse modes. L V%/O'S'te problem, while the second is our variational candi-

us now choose units such that=a=Q=1, and write the ate:
energy as a quadratic form, whose asociated matrix will be

called the dynamical matrix of the problem: VY, (x|V) Ox1~ Ox.2 0
’ X ==
1 2
H=3 2 dHaydy, 2
Y Using Eq.(1) it is easy to check that
D
1+«
Hey= > P ( Sy Oxy+ i) 1
Yo 2 S (V[rreereelvy <o if a<—|D+3). (8)
1+a,_;
Y=g
+————(Ogy— Oxy—2)> 3
2 (O Oy ® Therefore, ifa<— (D +1/2) (we shall see in the next sec-

. . . , , ) tion that the true threshold is actuallyD), the ground state
Since the potential enerd{) is translationally invariant, the ¢ o dynamical matrix will certainly have a negative eigen-

dynamical matrix, satisfies the constraint related to translag ;e Since the plane wave of zero momenturaligaysan
tional symmetry: the vector of all equal components, ( gjgenvector of zero eigenvalfisee Eq(1)], our level cross-
=const) is an eigenvector with zero eigenvalue. ing has taken place. Moreover, the trial vedidy is strongly
Notice that if all a,,, =0 the dynamical matrix turns out |ocajized on the defedthe real ground-state eigenvector is
to be that of a perfect crystéhence we call alefecta non- 55 |ocalized; see Sec. JllOne can thus expect a contribu-
vanishinge), which has plane-waves as eigenvectors: tion of orderp to the density of states over the negative
spectrum, if the functior in Eq. (6) is such that the prob-
ability of having a<—D is nonvanishing. However, in the
previous arguments, we have assumed that the defect was
isolated. Under the hypothesis of uncorrelated spring con-
p? stants, this will not be the generic case, unlgss exceed-
Eo(p)=2>, (1—COSDV)=?+O(P4)- (5 ingly small (the probability of having defects in touch is
! proportional top*). One can repeat the above variational
In the above equation, we have used the bra-ket notation arffgument assuming that some of the surrounding springs
we have denoted the total number of lattice pointélasve ~ have very small positive values. It turns out that a contribu-
shall study the case where thg , are uncorrelated, random tion of higher order irp to the density of states at negative

eipx

0l m\ — -
Hp)=Eo(P)Ip), (x|p) N (4)

variables whose probability distribution is eigenvalues is generated, no matter how small is the negative
value of the spring constaat+ 1. Therefore, if the probabil-
p(a)=(1-p)é(a)+ph(a), O0=<p=<l. (6) ity of «<<—1.0 is nonvanishing, the hybridization of the lo-

calized field configuration described above with the plane-
In the above equatiorp is the probability of finding one wave eigenstates will nontrivially modify the eigenvectors of
defect, whileh is a continuous probability function, which 7y
we take flat between and 0 (A <0). Notice that the disor- Let us now present our notation for the quantity under
der of Ref.[6] is recovered by taking=1 andh Gaussian. study, namely, the dynamical structure factor. It can be ob-
The rationale for choosing this kind of distribution is that we tained through the Fourier transform of the intermediate scat-
need somehow to go beyond the perturbative calculationgering function[10]:
that yield a broadening proportional pd for the peak of the
dynamical structure factor. This will be achieved by allowing 1 N
the random part of the springs to take large negative values, _ - =g SN2
but only for a small fractiorp of them: we will study an F(p.D N<exp( P xgl r(®) rX(O)]) > ©)
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In the above expression,(t) is the time-dependent position an undamped sound wave propagating in the crystal. When
of the particle labeled by the lattice siteAssuming that all Some disorder is introduced in the system, however, the mo-
the eigenvalues of the dynamical matrix are positive, in theénentum is no longer a good “quantum” number. We have
classical limit, the one-excitation approximation to the dy-for the resolvent

namical structure factor turns out to be 1

z—Eo(p)—2(p,2)°

The functionX(p,z) is called the self-energy, and its real
and imaginary parts have a nice physical interpretation. For
small momentum andclose toEy(p), the real park’(p,z)

is a slowly varying function o timesp?. The maximum of

¢ : ) : S(p,E) gets shifted roughly t&q(p) + =’ (p,Eq(p))xp?, so
Obt%'ned from the eigenvalués, by the simple relatiorE,  that we have a renormalization of the speed of sound. If the
= wy, . Notice also that in our scalar model we have droppechehavior ofS,’ was very different from that it would have a
all the Complications related to the distinction between parrather Catastrophic meaning: there would be no sound propa-
allel and longitudinal excitations. Now, since the dynamicalgation in the system. The value of the imaginary part of the
structure factor is strongly peaked at a frequency value Iineage”_energygn(p,z) at the peak position yields the width of

in the momentum, th@zlwz prefactor is rather uninterest- the peak, which has a Breit-Wigner Shape close to the
ing, and we shall focus on the sum term. The quantity thafaxima[the shape of theS(p,E) distribution function far

we shall be interested in 8(p,E) defined as from the peak, depends strongly on the precise behavior of
3" (p,E+ie€) along the spectruin

G(p,2)= (15

kg Tp?

SW(q,w)=——
Mmw

N
n; Kal mP é(o—w,), (10

where the overbar stands for the averages overthethe
[n) are the eigenvectors of the dynamical mattj) is the
plane wave of momentuim and the eigenfrequencies, are

N
= 2 _
S(p,E)—ngl KalmP o(E=En Ill. ANALYTICAL CALCULATIONS

In this section we will sketch two approximate calcula-
tions, namely, the single-defect approximation and the
single-link CPA[8] approximation. The first will yield the
. . o . ) exact solution of the problem of a crystal with a single de-
The rationale for taking as our pr_|V|Ieged vana_lble t_he eigeNtect, and will motivate the more powerful CPA approxima-
value rather than the frequency is that negative e|ger_1value>(§)n that can also be used for large valuespofn this way,
will be important for our argument, as we have previously,ye jearm that the order threshold for the presence of nega-
said, and therefore the transformatian=\E, introduces e eigenvalues is not= —D—1/2, as roughly shown in
some problems. A drawback of this convention is that thesec ||, put—D. This threshold separates two well defined
peak broadening in the eigenvalue domain gets an extra fa%‘caling limits for the width oS(p,E) at smallp

. ; ; ; 4 ’ )
tor p: the perturbative result is proportional p3 (p* inthe (1) If the density of states is null at zero energy the imagi-
frequen_cy dom%m \évr_nle the physical glassy behavior is nary part of the self-energ” is proportional topP*2
proportional top* (p® in the frequency domajn (which yields a spectral width proportional i *2 in the
~ The representation o§(p,E) that will be most conve-  eigenvalue domain and P ** in the frequency domajn

hient for us is based on the distribution identity+(i0) (2) When an extensive number of negative eigenvalues is
=P(1/x)—im5(x), and on the resolver®(p,2): presenty.”op? (or p for the width in the frequency domain

Of course, thepP "2 contribution will still be present but it

1 N
:Z nzl |<q| n>|2 Sw—w,). (11)

G(p,2)=(p| 1 p) (12) will be subdominant at low momentum. A crossover might
' z—H'"" be visible, depending on the strength of the disorder.
As an introduction let us first solve the problem of the
1 ) i crystal with a single defect. The dynamical matrix in the
S(p.E)=——_Imlim G(p,E+ie). (13 presence of a unique defect of amplitudean be split into

e—0"

two terms:

In other words, as a function of the complex variablehe
resolvent is an analytic function with a cut along the part of
the real axis where the spectrum of the dynamical matrixl.
lies. The discontinuity of the resolvent across the cut is pre
cisely theS(p,E). In the case of a crystaall «’s in Eq. (1)

Huy=H oyt Ry (16)

he perturbation ternR,, hence connects the two sitg8
andy®+ v, connected by the spring where the defect exists:

equal to zer@ the cut degenerates into a point, and the re- _ O 0. .
sglvent has 2 pole, ’ i Roy=a Iy%v)(ysol, an
Ox yo Ox yO+ v
0 - = x|y%v)= —— 2, (18
GP.2)= =gy (14) (xly%v) 2

For small momentum the pole is placed at a value lofear
in p?, that is, at a frequency linear m It thus corresponds to

The propagator can be expanded in powers of the perturba-
tion R. Writing the exact propagator as
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! Lt gt (19 Ve (x) I L (26)
= y X))o e y
z-H z-H® z-H® z—-HO F Bz(2)P Eo—Eo(d)
the resummation of the harmonic series yields which has a localization length of ordéE,| "% We thus
see that unless is exceedingly close to the critical value
0 a 0 —D the eigenvector is strongly localized around the defect.
T=ly W)m(y . (20 The single-defect approximation to the self-energy, Eq.

(27), amounts to considering that each defect contributes
only to its own localized eigenvector, and that no other de-
fect is within its localization length. Let us turn back to the

original problem, with an extensive number of defects, and

The functiona(z) in Eq. (20) is given by

1 d°q  Eq(q)

azg)==| ——— (21)  repeat the above calculation, neglecting all terms that contain
DJez(27)P z—Eo(Q) two different defects. The matri€ is now a sum of terms
like the one in Eq20). If we now perform the average over
1 (2D E the a’s and apply Dyson resummation, the self-energy part
b, dEg(E)—£ (22)  of the propagator turns out to be
3 (p.2)=pEo(p) | dah(a);— (27)
dPq p,ZZPopf“ Y1 " aal2)’
0o(E)= | sE-Eqa), (23) aa(?)
Bz(2)

at first order inp (the defect interactions will generate the
ﬁ{der p? and higher-order corrections to the single-defect
resul.

_ The width ofS(q,E) is simply given by the value of the
imaginary part of the self-energy at the peak, whose position
can be obtained from the real part of the self-energy,
EM®{(p)~Ey(p)+ReX(p,Ey(p)). Notice that our self-energy

In the above expressions the lattice integrals are extended
the first Brillouin zone, and we have denoted ¢iy(E) the
density of states of the pure crystal. From the small momen
tum resultEy(p) = p?/2+ O(p?), it is easy to get for smak

the following approximate resut.1]:

ED/2-1 i_s _proportional_ toI_Eo(p) so that we are basically getting a
9o(BE)~ ————-—. (24 finite renormalization of the speed of sound. We can estimate
['(D/2)wP?2b"2 the imaginary part of the self-energy using ER5). If the

probability densityh(«) does not allowr to be smaller than
Applying the decompositionx(+i0) ™= P(1/x) —i 7 8(x) to —D, the only imaginary term in Eq27) comes froma(E
Eq. (21) and using Eq(24), we immediately get for small +i0), and it is of ordemp?EP?, yielding a value of order

positive values of the eigenvalue the useful result p2*P at the peak. On the other handaifcan be smaller than
—D, an imaginary part of ordep?h(—D) arises from the
_ 1 ED/2 pole in Eq.(27).
a(E+i0)~— 5 —i 2572, 1T D J2)” (25 Led by the functional form of the self-energy in E&7),

one can consider self-energies of the form of a function of

energy multiplied byEy(p) also wherp is not small and the

single-defect approximation no longer holds. This is the idea

underlying the well-known CPA approximatidi8], where

one sets (p,z)=[I'(z) — 1]Eq(p). A self-consistency equa-
%ion can be readily written fof'(z):

For negative values dt the functiona(E+i0) is real and
monotonically decreasing: its value is zero -ate, and it
tends to—1/D whenE tends to 0.

We are now ready to discuss our exact result given in E
(20). The correction term in Eq20) has a singularity for the
valuelof the enerngadsatisfying 1- aa(Ea+]i¢0¥]=0. This 1+a—T(2)
singularity corresponds to an eigenstate of the system, in- =
duced by the defect, and the relatior &a(E,+i0)=0 is I'@)-alZl(2)][1+a-T(2)]

analogous to a quantum-mechanical gap equation.<lE0 ¢ is clear that the width 08(q,E) critically depends on the
<2D, that is, over the crystal spectrum, the{E+i0) hasa \aue of ' (0+i€). For the flat distribution ofx introduced
f!mte imaginary part,' so that the gap equatlon has no soluy, Eq. (6), one can solve E¢28) in the limit of smallp, as
tion. For negative, if a>jD_, no solut!on can be found I'(0)=1+bp+0O(p?), obtaining

either sincela(E+i0)|<|a| ! in this region. On the other

hand, ifa<—D, a unique solutioriE,, appears. The position D . D

of the singularity decreases monotonically frép=0 for b=D{1-D |n|)\+D| +Him=6(D+N) |, (29
a=—D toE_,= — for «= —0. In this situation, the propa-

gator has a cut running from 0 taD2 plus an isolated sin- where §(x)=1 for x<0 and zero otherwise. It is easy to
gularity (a polg that corresponds to the ground state of thecheck that the single-defect result is exactly the same as Eq.
dynamical matrix: the level crossing that we anticipated in(29).

Sec. Il has taken place. The residue of this pole is Fixing from now onD=3, Eq.(28) can be numerically
W (x)WE(y). Therefore, one obtains the wave function for solved in the general case. We choose to write it fizeal-
the ground state of the dynamical matrix, point equation, and solve it recursively. The evaluation of

0. (28
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FIG. 1. Upper part: Th&(q,E) function, forp= 237 n/96 for FIG. 2. The spectral widtk [see Eq.30)] as a function of the

n=1,2,6,10,14, from left to right, both in the CP@ashed lings  external momentum in the CPA, for a density of defgets0.1.
and in the numerical calculatiotfull lines), for p=0.1 and\ =
—10.0. Lower part: The same fgy=0.1 andA=—-1.0, andp e is the mean distance between eigenstates, which is roughly
=237 n/96 forn=8,10,12,14, from left to right. given by (D—\)/N, where N is the lattice volume ¢
~10 ° in our 96 lattice). If the width of the peak is com-
a(z) defined in Eq(21) requires numerical calculation of the parable withe, the results will be definitely affected by
density of states for the pure cryslall]. In this way, we are finjte-size effects. The limitation related to the number of
able to obtain estimates &f(z) with an accuracy of 10,  moments is not serious for the central part of &{g,E)
which is roughly the smallest spectral broadening that wesurve, but can be rather strong if one wants to calculate the
can aCCUrater calculate with the CPA. We find that in thetans of the distribution. In practice, we have used 30 mo-
CPA there are the same two regimes as in the single-defegients for 10 different disorder realizations, and we have
computation, separated by a critical line, that start8 &b truncated the continuous fraction in a standard \Wag],
—0)=-3 and ends ak(p=1)=—1.22. The appearance finding very satisfactory results, unless the peak height ap-
of the p® regime coincides with, and is due to, the vanishingproaches values of order 5.0when finite-size effects turn

of the negative-energy spectrum. However, as explained igut to be important. We fit our results to the Breit-Wigner
Sec. Il, one rather expects that what vanishes is the grder form

contribution to the density of states in this region. In fact, we
expect a nonvanishing density of states all the way down to N
A=—1, where no negative spring exists. It is remarkable S(E.Q)=————>
that whenp=1 the CPA retains a nonvanishing fraction of (E-Ep)*+%
negative eigenvalues up o= —1.22, quite close to the cor-
rect valuen=—1.

The agreement between the CPA and the results fro
numerical simulations fo8(p,E) turns out to be better than
5% in the two extreme casdsee Fig. 1L That is the one
where there are no negative springs={—1) and the one
where the spring constant can be very negative (- 10). PReTY
Close to the CPA critical lindon the unstable crystal sigde =225 X
the agreement is still quite good. On #@PA) stable border b A=205 X
side, a scaling betweasf andp® is found, depending on the A=19 E‘
density of defectsp. For example, with the value of the O
density of defectp=0.1, in Fig. 2 the transition between the
two regimes found by the CPA at= —2.15 is very evident. P N

(30

which satisfactorily describes the peak in all cases, although
it usually overestimates the tails of the distribution. The po-
Mition of the peakE, is linear inp? as expected. More im-
portantly, the results from numerical simulatio(Sig. 3
show very clearly that the critical line previously discussed is

01

IV. NUMERICAL COMPUTATIONS

We numerically computed the structure fac8§E,q) for oy

our model utilizing the method of moment$2], which al-
lows study of the statistical properties of the eigenvalues anc oot -
the eigenvectors of large dynamical matrices, avoiding their
diagonalization. This method is a clever modification of the 04
Lanczos method and it shares the same weakness, namely,

the lack of orthogonality when too large a number of mo-  FIG. 3. 3 as a function of the external momentum in the nu-
ments is computed. Another limitation is the necessity ofmerical simulations, for a density of defegts=0.1. The errors are
setting a finite value o€ in Eq. (13). A reasonable value for smaller than the data points.

O W XX

B 3k X

° @ O mOXX
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an artifact of the CPA, the real behavior being rather a crosstructure factor. Moreover, in Refl5], a Lennard-Jones
over. Let us finally stress that another source of finite-sizenodel of a glass was studied, and the dynamical structure
effects is that a real system actually becomes unstable whdactor was obtained from the instantaneous normal modes
there is an extensive number of negative springs, no matteralculated in the inherent structures of the glass phase. Since
how small their negative value, as follows from the simplean inherent structure does not have negative eigenvalues, and
analytic considerations sketched previously. If the probabilyet displays the typicgh? broadening, it seems clear that the
ity of the spring-constant configurations giving rise to local-presence of negative eigenvalues is not an essential micro-
ized negative-energy eigenvectors is smaller than the inverseopic ingredient for reproducing the features of high-
lattice volume, no negative-energy spectrum will be foundfrequency sound.

and the spectral broadening will be tpé-like. This is quite Further progress can be made only by recognizing which

likely the case foln=—1.6 in Fig. 3. feature of the model is responsible for this failure. The fact
that the model is scalar and so one cannot separate transverse

V. DISCUSSION AND OUTLOOK and longitudinal excitations does not seem of major impor-

. . ) tance to us. The fact of dealing with quenched disorder does

In this work, we have studied the dynamical structurenot seem crucial either. In fact, we believe that the principal
factor of a disordered harmonic solid, proposed as a simplgyspect is the lattice. Indeed, an on-lattice system is topologi-
model for the boson pedl6] found in the THz range of the 4|y ordered, which produces a number of anomalous fea-
vibrational excitations of supercooled liquids and glassesyres if compared with an off-lattice system. For instance, the
We have shown that, under the hypothesis of uncorrelategensity of states is the integral over the Brillouin zone of
random spring constants, an extensive number of negativ§p ), which is at the root of the close connection we have
springs always produces an extensive number of negativjund between the presence of negative eigenvalues and the
e|genvalu¢s of the dynamma} maitrix of this model. Now, broadening of the peak &(p,E). Moreover, for a topologi-
both the single-defect approximation and the OBAallow ¢4y disordered systen§(p,E) and the density of states are
us to write the self-energy (_)fa disordered harmonlc solid, fo'i/ery similar in the limit of largep, while for an on-lattice
small E and p, as a function of energy timeBo(p). AN modelS(p,E) is a periodic function of the momentum. We
unavoidable consequence of this functional form is that, fofperefore believe that it will be very interesting to study simi-
the stable solidno negative eigenvalugshe perturbative™ |3y models where the particles are not constrained to oscillate
result holds(in frequency spage For theunstablesolid, the  5r0und lattice points, like, for instance, the one in Rél,

broadening is proportional tp, rather than tgp?. Our nU-  and so do not have the peculiar lattice properties.
merical calculations on $6disordered lattices confirm the

above picture. For wavelengths in the rangel0a] (a be-

ing the lattice constajita crossover regime may result, de-
pending on the strength of the disorder, from the competition
between thep and p* terms in the self-energy. Since the = We gratefully acknowledge interesting discussions with
onset of slow dynamics in supercooled liquids is clearly cor-A. Gonzalez, M. Meard, G. Ruocco, and G. Viliani.
related with a rather strong decrease of the density of negad/.M.M. has been partially supported by CYCyGrant Nos.
tive states on their instantaneous normal mode, it is  AEN97-1708 and AEN99-1693 Our numerical computa-
natural to conclude that the mechanism of R&f.cannot be tions were carried out on the Kalix2 pentium cluster of the
responsible for the physic@f broadening of the dynamical University of Cagliari.
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