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Dynamical structure factor in disordered systems

V. Martı́n-Mayor, G. Parisi, and P. Verrocchio
Dipartimento di Fisica, Universita` di Roma ‘‘La Sapienza,’’ INFN Sezione di Roma– INFM Unità di Roma,

Piazzale Aldo Moro 2, 00185 Roma, Italy
~Received 27 March 2000!

We study the spectral width as a function of the external momentum for the dynamical structure factor of a
disordered harmonic solid, considered as a toy model for supercooled liquids and glasses. In the contexts of
both the single-link coherent potential approximation and a single-defect approximation, two different regimes
are clearly identified: if the density of states at zero energy is zero, the usualp4 law is recovered for small
momentum. On the contrary, if the disorder induces a nonvanishing density of states at zero energy, a linear
behavior is obtained. The dynamical structure factor is numerically calculated in lattices as large as 963 and
satisfactorily agrees with the analytical computations.

PACS number~s!: 61.43.Fs, 63.50.1x
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I. INTRODUCTION

The spectrum of vibrational excitations of supercoo
liquids and glasses is attracting a great deal of attention f
the experimental side@1#, in numerical simulations@2#, and
also from the analytical point of view@3–5#. The recent de-
velopment of high-resolution inelastic x-ray scattering fac
ties has allowed study of the dynamical structure factors
glasses and liquids up to mesoscopic exchanged momen
has become clear that the spectra of excitations of bothfrag-
ile and strong glass formers present interesting features
the .0.1 THz frequency range, namely, the boson peak
high-frequency sound. In the dynamical structure factor
peak is observed at frequenciesV(p) linear in the exchanged
momentum up to 0.1p020.5p0 , p0 being the position of the
first maximum in the static structure factor. The slope of
almost linear dispersion relationV(p), if extrapolated to
zero exchanged momentum, yields the macroscopic so
velocity ~thus the name ‘‘high-frequency sound’’!. This peak
located atV(p) has a very mildly temperature-depende
width, which grows with the square of the external mome
tum. This independence of the spectral width on tempera
makes it very plausible that the microscopic origin of th
broadening is to be found in disorder. At higher exchang
momenta, however, the peak position ceases to depen
the external momentum, and stabilizes at a frequency
small if compared to the Debye frequency. This boson p
is reflected in the low-temperature anomalies of the spec
heat, and appears in instantaneous normal mode analys
an excess in the density of states compared to thev2 Debye
spectrum.

The above mentioned spectral properties have rece
been recovered in the context of the mode-coupling the
properly adapted to describe the glassy phase@5#. Yet it
would also be very interesting to obtain the high-frequen
sound properties microscopically, using a very simplifi
model, in order to understand which are the essential in
dients. An appealingly simple model was proposed in R
@6#: it is a model of a disordered three-dimensional harmo
solid, where the disorder is put on the values of the spr
constants, in order to mimic the topological disorder@7# ex-
isting in supercooled liquids. Interestingly enough, the mo
PRE 621063-651X/2000/62~2!/2373~7!/$15.00
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shares qualitatively with the supercooled liquids some
evant spectral properties: the existence of high-freque
sound and a boson peak. The dynamical structure facto
the disordered-solid model was also studied in Ref.@6#, but,
in the context of the well known coherent potential appro
mation~CPA! @8#, the broadening of the peak correspondi
to the high-frequency sound turned out to be proportiona
p4, very different from supercooled liquids, where it is pr
portional top2. It was noticed, however, that a rather diffe
ent scaling appeared at the characteristic frequencies o
boson peak, and it was argued that the boson peak deve
when some spring constants are allowed to have a s
negative value. On the other hand, in Ref.@9#, it was also
suggested that if an extensive number of negative spring c
stants is present in three-dimensional disordered-solid-
systems, thep2 broadening will appear. In this paper, w
want to investigate the problem of the peak broadening,
both numerical and analytical means. By focusing on
high-frequency sound, our main finding will be that thep4

broadeningalwaysholds, unless the solid becomesunstable.
That is, if the dynamical matrix, to be defined later, has
extensive number of negative eigenvalues, the system d
present soundlike peaks in its dynamical structure factor,
with a width proportional top, not p2. Otherwise, the stan
dard p4 behavior is to be expected. Furthermore, this}p
behavior of disordered lattice models is closely linked to
fact that the disorder concerns the strengths of the inte
tions and not the geometry of the system. Hence there is
reason to expect a similar connection between negative
genvalues and deviations from thep4 scaling in supercooled
liquids.

The layout of the rest of this paper is as follows. In Sec
we present the model that we shall study, and we introd
our notation. In Sec. III we present our analytical calcu
tions for the dynamical structure factor. The results are co
pared with a numerical computation in Sec. IV. In Sec.
we discuss our results and the outlook for this work.

II. MODEL

A disorderd harmonic solid@6# consists of a set of par
ticles of massm, placed on the nodes of a simple cub
2373 ©2000 The American Physical Society
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lattice in D dimensions, with lattice spacinga, connected
with their nearest neighbors through random springs. T
potential energy of such a system is given in terms of
displacement of the particles from the lattice nodes:

H5
mV2a2

2 (
x

(
m51

D

~11ax,m! S fx2fx1m̂

a D 2

. ~1!

In the above expression,V is a characteristic frequency an
m̂ is the lattice unit vector in them direction. Periodic bound-
ary conditions are assumed in a finite lattice, and we h
also introduced the notationax,m for the random part of the
spring constant of the spring connecting sitesx and x1m̂.
Notice that, for the sake of simplicity, the displacement fie
fx is a scalar rather than a vector@6#, so that we will not be
able to separate the longitudinal and transverse modes
us now choose units such thatm5a5V51, and write the
energy as a quadratic form, whose asociated matrix will
called the dynamical matrix of the problem:

H5
1

2 (
xy

fxHxyfy , ~2!

Hxy5 (
m51

D
11ay,m

2
~dxy2dx,y1m̂!

1
11ay2m̂,m

2
~dxy2dx,y2m̂!, ~3!

Since the potential energy~1! is translationally invariant, the
dynamical matrix, satisfies the constraint related to tran
tional symmetry: the vector of all equal components (fx
5const) is an eigenvector with zero eigenvalue.

Notice that if allax,m50 the dynamical matrix turns ou
to be that of a perfect crystal~hence we call adefecta non-
vanishinga), which has plane-waves as eigenvectors:

H 0up&5E0~p!up&, ^xup&5
eipx

AN
, ~4!

E0~p!5(
n

~12cospn!5
p2

2
1O~p4!. ~5!

In the above equation, we have used the bra-ket notation
we have denoted the total number of lattice points asN. We
shall study the case where theay,m are uncorrelated, random
variables whose probability distribution is

p~a!5~12r!d~a!1rh~a!, 0<r<1. ~6!

In the above equation,r is the probability of finding one
defect, whileh is a continuous probability function, whic
we take flat betweenl and 0 (l,0). Notice that the disor-
der of Ref.@6# is recovered by takingr51 andh Gaussian.
The rationale for choosing this kind of distribution is that w
need somehow to go beyond the perturbative calculat
that yield a broadening proportional top4 for the peak of the
dynamical structure factor. This will be achieved by allowi
the random part of the springs to take large negative val
but only for a small fractionr of them: we will study an
e
e

e

et

e

a-

nd

s

s,

expansion in the density of defects. Our nonperturbative
fect will be a level crossing~the only possible source o
nonanalyticity in such a simple model!. Indeed, if all thea ’s
are greater than21, it is evident from Eq.~1! that no nega-
tive eigenvalue may arise, and so the plane wave of z
momentum is the ground state of the dynamical matrix, w
zero eigenvalue. On the other hand, we shall now sketc
variational estimate of the ground state that shows tha
there is onlyone defect on the lattice, but this is negativ
enough, the ground state of the dynamical matrix is
longer zero, but negative. Let us first keep in Eq.~3! only the
spring connecting sites 1 and 2, corresponding to the la
negative defect. The eigenvectors are easily shown to
fx5(dx,11dx,2)/A2 and (dx,12dx,2)/A2. The first one is the
restriction of the zero-momentum plane wave to this triv
two-site problem, while the second is our variational can
date:

uV&, ^xuV&5
dx,12dx,2

A2
. ~7!

Using Eq.~1! it is easy to check that

^VuH 1de f ectuV&,0 if a,2S D1
1

2D . ~8!

Therefore, ifa,2(D11/2) ~we shall see in the next sec
tion that the true threshold is actually2D), the ground state
of the dynamical matrix will certainly have a negative eige
value. Since the plane wave of zero momentum isalwaysan
eigenvector of zero eigenvalue@see Eq.~1!#, our level cross-
ing has taken place. Moreover, the trial vectoruV& is strongly
localized on the defect~the real ground-state eigenvector
also localized; see Sec. III!. One can thus expect a contribu
tion of order r to the density of states over the negati
spectrum, if the functionh in Eq. ~6! is such that the prob-
ability of having a,2D is nonvanishing. However, in the
previous arguments, we have assumed that the defect
isolated. Under the hypothesis of uncorrelated spring c
stants, this will not be the generic case, unlessr is exceed-
ingly small ~the probability of havingk defects in touch is
proportional tork). One can repeat the above variation
argument assuming that some of the surrounding spr
have very small positive values. It turns out that a contrib
tion of higher order inr to the density of states at negativ
eigenvalues is generated, no matter how small is the nega
value of the spring constanta11. Therefore, if the probabil-
ity of a,21.0 is nonvanishing, the hybridization of the lo
calized field configuration described above with the pla
wave eigenstates will nontrivially modify the eigenvectors
H.

Let us now present our notation for the quantity und
study, namely, the dynamical structure factor. It can be
tained through the Fourier transform of the intermediate s
tering function@10#:

F~p,t !5
1

N K expS ipW •(
x51

N

@rWx~ t !2rWx~0!# D L . ~9!
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PRE 62 2375DYNAMICAL STRUCTURE FACTOR IN DISORDERED SYSTEMS
In the above expression,rWx(t) is the time-dependent positio
of the particle labeled by the lattice sitex. Assuming that all
the eigenvalues of the dynamical matrix are positive, in
classical limit, the one-excitation approximation to the d
namical structure factor turns out to be

S (1)~q,v!5
kBTp2

mv2 (
n51

N

z^q u n& z2 d~v2vn!, ~10!

where the overbar stands for the averages over thea ’s, the
un& are the eigenvectors of the dynamical matrix,up& is the
plane wave of momentump, and the eigenfrequenciesvn are
obtained from the eigenvaluesEn by the simple relationEn

5vn
2 . Notice also that in our scalar model we have dropp

all the complications related to the distinction between p
allel and longitudinal excitations. Now, since the dynami
structure factor is strongly peaked at a frequency value lin
in the momentum, thep2/v2 prefactor is rather uninteres
ing, and we shall focus on the sum term. The quantity t
we shall be interested in isS(p,E) defined as

S~p,E![ (
n51

N

z^q u n& z2 d~E2En!

5
1

2v (
n51

N

z^q u n& z2 d~v2vn!. ~11!

The rationale for taking as our privileged variable the eig
value rather than the frequency is that negative eigenva
will be important for our argument, as we have previou
said, and therefore the transformationvn5AEn introduces
some problems. A drawback of this convention is that
peak broadening in the eigenvalue domain gets an extra
tor p: the perturbative result is proportional top5 (p4 in the
frequency domain!, while the physical glassy behavior
proportional top3 (p2 in the frequency domain!.

The representation ofS(p,E) that will be most conve-
nient for us is based on the distribution identity (x1 i0)21

5P(1/x)2 ipd(x), and on the resolventG(p,z):

G~p,z![^pu
1

z2H up&, ~12!

S~p,E!52
1

p
Im lim

e→01

G~p,E1 i e!. ~13!

In other words, as a function of the complex variablez, the
resolvent is an analytic function with a cut along the part
the real axis where the spectrum of the dynamical ma
lies. The discontinuity of the resolvent across the cut is p
cisely theS(p,E). In the case of a crystal@all a ’s in Eq. ~1!
equal to zero#, the cut degenerates into a point, and the
solvent has a pole,

G0~p,z!5
1

z2E0~p!
. ~14!

For small momentum the pole is placed at a value ofz linear
in p2, that is, at a frequency linear inp. It thus corresponds to
e
-

d
r-
l
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t

-
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e
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f
x
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an undamped sound wave propagating in the crystal. W
some disorder is introduced in the system, however, the
mentum is no longer a good ‘‘quantum’’ number. We ha
for the resolvent

G~p,z!5
1

z2E0~p!2S~p,z!
. ~15!

The functionS(p,z) is called the self-energy, and its re
and imaginary parts have a nice physical interpretation.
small momentum andz close toE0(p), the real partS8(p,z)
is a slowly varying function ofz timesp2. The maximum of
S(p,E) gets shifted roughly toE0(p)1S8„p,E0(p)…}p2, so
that we have a renormalization of the speed of sound. If
behavior ofS8 was very different from that it would have
rather catastrophic meaning: there would be no sound pro
gation in the system. The value of the imaginary part of
self-energyS9(p,z) at the peak position yields the width o
the peak, which has a Breit-Wigner shape close to
maxima @the shape of theS(p,E) distribution function far
from the peak, depends strongly on the precise behavio
S9(p,E1 i e) along the spectrum#.

III. ANALYTICAL CALCULATIONS

In this section we will sketch two approximate calcul
tions, namely, the single-defect approximation and
single-link CPA @8# approximation. The first will yield the
exact solution of the problem of a crystal with a single d
fect, and will motivate the more powerful CPA approxim
tion that can also be used for large values ofr. In this way,
we learn that the orderr threshold for the presence of neg
tive eigenvalues is nota52D21/2, as roughly shown in
Sec. II, but2D. This threshold separates two well define
scaling limits for the width ofS(p,E) at smallp.

~1! If the density of states is null at zero energy the ima
nary part of the self-energyS9 is proportional topD12

~which yields a spectral width proportional topD12 in the
eigenvalue domain and topD11 in the frequency domain!.

~2! When an extensive number of negative eigenvalue
present,S9}p2 ~or p for the width in the frequency domain!.
Of course, thepD12 contribution will still be present but it
will be subdominant at low momentum. A crossover mig
be visible, depending on the strength of the disorder.

As an introduction let us first solve the problem of th
crystal with a single defect. The dynamical matrix in th
presence of a unique defect of amplitudea can be split into
two terms:

Hxy5H xy
0 1Rxy . ~16!

The perturbation termRxy hence connects the two sitesy0

andy01n, connected by the spring where the defect exis

R xy[ay0;nuy0;n&^y0;nu, ~17!

^xuy0;n&[
dx,y02dx,y01n

A2
. ~18!

The propagator can be expanded in powers of the pertu
tion R. Writing the exact propagator as
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1

z2H 5
1

z2H 0
1

1

z2H 0
T 1

z2H 0
, ~19!

the resummation of the harmonic series yields

T5uy0;n&
a

12aa~z!
^y0;nu. ~20!

The functiona(z) in Eq. ~20! is given by

a~z!5
1

DE
BZ

dDq

~2p!D

E0~q!

z2E0~q!
~21!

5
1

DE
0

2D

dEg0~E!
E

z2E
, ~22!

g0~E![ E
BZ

dDq

~2p!D
d„E2E0~q!…. ~23!

In the above expressions the lattice integrals are extende
the first Brillouin zone, and we have denoted byg0(E) the
density of states of the pure crystal. From the small mom
tum resultE0(p)5p2/21O(p4), it is easy to get for smallE
the following approximate result@11#:

g0~E!;
ED/221

G~D/2!pD/22D/2
. ~24!

Applying the decomposition (x1 i0)215P(1/x)2 ipd(x) to
Eq. ~21! and using Eq.~24!, we immediately get for smal
positive values of the eigenvalue the useful result

a~E1 i0!;2
1

D
2 i

ED/2

2D/2pD/221G~D/2!
. ~25!

For negative values ofE the functiona(E1 i0) is real and
monotonically decreasing: its value is zero at2`, and it
tends to21/D whenE tends to 02.

We are now ready to discuss our exact result given in
~20!. The correction term in Eq.~20! has a singularity for the
value of the energyEa satisfying 12aa(Ea1 i0)50. This
singularity corresponds to an eigenstate of the system,
duced by the defect, and the relation 12aa(Ea1 i0)50 is
analogous to a quantum-mechanical gap equation. If 0,E
,2D, that is, over the crystal spectrum, thena(E1 i0) has a
finite imaginary part, so that the gap equation has no s
tion. For negativeE, if a.2D, no solution can be found
either sinceua(E1 i0)u,uau21 in this region. On the othe
hand, ifa,2D, a unique solutionEa appears. The position
of the singularity decreases monotonically fromEa50 for
a52D to Ea52` for a52`. In this situation, the propa
gator has a cut running from 0 to 2D, plus an isolated sin-
gularity ~a pole! that corresponds to the ground state of t
dynamical matrix: the level crossing that we anticipated
Sec. II has taken place. The residue of this pole
CF(x)CF* (y). Therefore, one obtains the wave function f
the ground state of the dynamical matrix,
to

n-

q.

n-

u-

s

CF~x!}E
BZ

dDq

~2p!D

12eiqn

Ea2E0~q!
eiq(x1y0), ~26!

which has a localization length of orderuEau21/2. We thus
see that unlessa is exceedingly close to the critical value
2D the eigenvector is strongly localized around the defe

The single-defect approximation to the self-energy, E
~27!, amounts to considering that each defect contribu
only to its own localized eigenvector, and that no other d
fect is within its localization length. Let us turn back to th
original problem, with an extensive number of defects, a
repeat the above calculation, neglecting all terms that con
two different defects. The matrixT is now a sum of terms
like the one in Eq.~20!. If we now perform the average ove
the a ’s and apply Dyson resummation, the self-energy p
of the propagator turns out to be

S~p,z!5rE0~p!E dah~a!
a

12aa~z!
, ~27!

at first order inr ~the defect interactions will generate th
order r2 and higher-order corrections to the single-defe
result!.

The width ofS(q,E) is simply given by the value of the
imaginary part of the self-energy at the peak, whose posi
can be obtained from the real part of the self-ener
Emax(p)'E0(p)1ReS„p,E0(p)…. Notice that our self-energy
is proportional toE0(p) so that we are basically getting
finite renormalization of the speed of sound. We can estim
the imaginary part of the self-energy using Eq.~25!. If the
probability densityh(a) does not allowa to be smaller than
2D, the only imaginary term in Eq.~27! comes froma(E
1 i0), and it is of orderp2ED/2, yielding a value of order
p21D at the peak. On the other hand, ifa can be smaller than
2D, an imaginary part of orderp2h(2D) arises from the
pole in Eq.~27!.

Led by the functional form of the self-energy in Eq.~27!,
one can consider self-energies of the form of a function
energy multiplied byE0(p) also whenr is not small and the
single-defect approximation no longer holds. This is the id
underlying the well-known CPA approximation@8#, where
one setsS(p,z)5@G(z)21#E0(p). A self-consistency equa
tion can be readily written forG(z):

11a2G~z!

G~z!2a@z/G~z!#@11a2G~z!#
50. ~28!

It is clear that the width ofS(q,E) critically depends on the
value ofG(01 i e). For the flat distribution ofa introduced
in Eq. ~6!, one can solve Eq.~28! in the limit of smallr, as
G(0)511br1O(r2), obtaining

b5DS 12D ln
D

ul1Du
1 ip

D

l
u~D1l! D , ~29!

where u(x)51 for x,0 and zero otherwise. It is easy t
check that the single-defect result is exactly the same as
~29!.

Fixing from now onD53, Eq. ~28! can be numerically
solved in the general case. We choose to write it as afixed-
point equation, and solve it recursively. The evaluation
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a(z) defined in Eq.~21! requires numerical calculation of th
density of states for the pure crystal@11#. In this way, we are
able to obtain estimates ofG(z) with an accuracy of 1024,
which is roughly the smallest spectral broadening that
can accurately calculate with the CPA. We find that in t
CPA there are the same two regimes as in the single-de
computation, separated by a critical line, that starts atlc(r
→0)523 and ends atlc(r51)521.22. The appearanc
of the p5 regime coincides with, and is due to, the vanishi
of the negative-energy spectrum. However, as explaine
Sec. II, one rather expects that what vanishes is the ordr
contribution to the density of states in this region. In fact,
expect a nonvanishing density of states all the way down
l521, where no negative spring exists. It is remarka
that whenr51 the CPA retains a nonvanishing fraction
negative eigenvalues up tol521.22, quite close to the cor
rect valuel521.

The agreement between the CPA and the results f
numerical simulations forS(p,E) turns out to be better tha
5% in the two extreme cases~see Fig. 1!. That is the one
where there are no negative springs (l521) and the one
where the spring constant can be very negative (l5210).
Close to the CPA critical line~on the unstable crystal side!
the agreement is still quite good. On the~CPA! stable border
side, a scaling betweenp6 andp5 is found, depending on the
density of defects,r. For example, with the value of th
density of defectsr50.1, in Fig. 2 the transition between th
two regimes found by the CPA atl522.15 is very evident.

IV. NUMERICAL COMPUTATIONS

We numerically computed the structure factorS(E,q) for
our model utilizing the method of moments@12#, which al-
lows study of the statistical properties of the eigenvalues
the eigenvectors of large dynamical matrices, avoiding th
diagonalization. This method is a clever modification of t
Lanczos method and it shares the same weakness, na
the lack of orthogonality when too large a number of m
ments is computed. Another limitation is the necessity
setting a finite value ofe in Eq. ~13!. A reasonable value fo

FIG. 1. Upper part: TheS(q,E) function, forp52A3p n/96 for
n51,2,6,10,14, from left to right, both in the CPA~dashed lines!
and in the numerical calculation~full lines!, for r50.1 andl5
210.0. Lower part: The same forr50.1 andl521.0, andp
52A3p n/96 for n58,10,12,14, from left to right.
e
e
ct

in

to
e

m

d
ir

ely,
-
f

e is the mean distance between eigenstates, which is rou
given by (2D2l)/N, where N is the lattice volume (e
'1025 in our 963 lattice!. If the width of the peak is com-
parable with e, the results will be definitely affected b
finite-size effects. The limitation related to the number
moments is not serious for the central part of theS(q,E)
curve, but can be rather strong if one wants to calculate
tails of the distribution. In practice, we have used 30 m
ments for 10 different disorder realizations, and we ha
truncated the continuous fraction in a standard way@13#,
finding very satisfactory results, unless the peak height
proaches values of order 105, when finite-size effects turn
out to be important. We fit our results to the Breit-Wign
form

S~E,q!5
N

~E2E0!21S2
, ~30!

which satisfactorily describes the peak in all cases, altho
it usually overestimates the tails of the distribution. The p
sition of the peakE0 is linear in p2 as expected. More im-
portantly, the results from numerical simulations~Fig. 3!
show very clearly that the critical line previously discussed

FIG. 2. The spectral widthS @see Eq.~30!# as a function of the
external momentum in the CPA, for a density of defectsr50.1.

FIG. 3. S as a function of the external momentum in the n
merical simulations, for a density of defectsr50.1. The errors are
smaller than the data points.
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an artifact of the CPA, the real behavior being rather a cr
over. Let us finally stress that another source of finite-s
effects is that a real system actually becomes unstable w
there is an extensive number of negative springs, no ma
how small their negative value, as follows from the simp
analytic considerations sketched previously. If the proba
ity of the spring-constant configurations giving rise to loc
ized negative-energy eigenvectors is smaller than the inv
lattice volume, no negative-energy spectrum will be fou
and the spectral broadening will be toop5-like. This is quite
likely the case forl521.6 in Fig. 3.

V. DISCUSSION AND OUTLOOK

In this work, we have studied the dynamical structu
factor of a disordered harmonic solid, proposed as a sim
model for the boson peak@6# found in the THz range of the
vibrational excitations of supercooled liquids and glass
We have shown that, under the hypothesis of uncorrela
random spring constants, an extensive number of nega
springs always produces an extensive number of nega
eigenvalues of the dynamical matrix of this model. No
both the single-defect approximation and the CPA@8# allow
us to write the self-energy of a disordered harmonic solid,
small E and p, as a function of energy timesE0(p). An
unavoidable consequence of this functional form is that,
the stable solid~no negative eigenvalues!, the perturbativep4

result holds~in frequency space!. For theunstablesolid, the
broadening is proportional top, rather than top2. Our nu-
merical calculations on 963 disordered lattices confirm th
above picture. For wavelengths in the range@a,10a# (a be-
ing the lattice constant!, a crossover regime may result, d
pending on the strength of the disorder, from the competit
between thep and p4 terms in the self-energy. Since th
onset of slow dynamics in supercooled liquids is clearly c
related with a rather strong decrease of the density of ne
tive states on their instantaneous normal modes@14#, it is
natural to conclude that the mechanism of Ref.@9# cannot be
responsible for the physicalp2 broadening of the dynamica
nd

tt

.
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structure factor. Moreover, in Ref.@15#, a Lennard-Jones
model of a glass was studied, and the dynamical struc
factor was obtained from the instantaneous normal mo
calculated in the inherent structures of the glass phase. S
an inherent structure does not have negative eigenvalues
yet displays the typicalp2 broadening, it seems clear that th
presence of negative eigenvalues is not an essential m
scopic ingredient for reproducing the features of hig
frequency sound.

Further progress can be made only by recognizing wh
feature of the model is responsible for this failure. The fa
that the model is scalar and so one cannot separate trans
and longitudinal excitations does not seem of major imp
tance to us. The fact of dealing with quenched disorder d
not seem crucial either. In fact, we believe that the princi
suspect is the lattice. Indeed, an on-lattice system is topol
cally ordered, which produces a number of anomalous f
tures if compared with an off-lattice system. For instance,
density of states is the integral over the Brillouin zone
S(p,E), which is at the root of the close connection we ha
found between the presence of negative eigenvalues and
broadening of the peak ofS(p,E). Moreover, for a topologi-
cally disordered system,S(p,E) and the density of states ar
very similar in the limit of largep, while for an on-lattice
modelS(p,E) is a periodic function of the momentum. W
therefore believe that it will be very interesting to study sim
lar models where the particles are not constrained to osci
around lattice points, like, for instance, the one in Ref.@4#,
and so do not have the peculiar lattice properties.
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